How do I construct … in GAP?

This page is devoted to answering some basic questions along the line “How do I construct … in GAP?” You may view the html source code for the GAP commands without the output or GAP prompt.

Please send suggestions, additions, corrections to David Joyner.

This page itself is under construction…


Questions

How
do I construct a … group?

permutation
dihedral 
cyclicconjugacy classes of a
finitely presented

How
do I … a polynomial?
How do I find the … of a group
representation?
How do I compute an mod m, where A is …?
Given a group G, how do I compute … ?

Answers


    • permutation:
      To construct a permutation group, write down generators in disjoint cycle notation, put them in a list (i.e., surround them by square brackets), and the permutation group G generated by the cycles (1,2)(3,4) and (1,2,3):
gap> G:=Group((1,2)(3,4),(1,2,3));

Group([ (1,2)(3,4), (1,2,3) ])

This is of course a subgroup of the symmetric group S4 on 4 letters. Indeed, this G is in fact the alternating group on four letters, A4.

By virtue of the fact that the permutations generating G employ integers less than or equal to 4, this group G is a subgroup of the symmetric group S4 on 4 letters. Some permutation groups have special constructions:

gap> S4:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> A4:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> IsSubgroup(S4,G);
true
gap> IsSubgroup(A4,G);
true
gap> S3:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> IsSubgroup(S3,G);
false


    • dihedral
      To construct a dihedral group, use the special “DihedralGroup” command:
gap> G:=DihedralGroup(6);
gap> Size(G);
6
gap> f:=GeneratorsOfGroup( G );
[ f1, f2 ]
gap> f[1]^2; f[2]^3;
identity of ...
identity of ...
gap> f[1]^2= f[2]^3;
true


  • cyclic group
    To construct a cyclic group, you may construct integers mod n:

    gap> R:=ZmodnZ( 12);
    (Integers mod 12)
    gap> a:=Random(R);
    ZmodnZObj( 11, 12 )
    gap> 4*a;
    ZmodnZObj( 8, 12 )
    gap> b:=Random(R);
    ZmodnZObj( 9, 12 )
    gap> a+b;
    ZmodnZObj( 8, 12 )
    

    or use the special “CyclicGroup” command

    gap> G:=CyclicGroup(12);
    pc group of size 12 with 3 generators
    gap> a:=Random(G);
    f3^2
    gap> f:=GeneratorsOfGroup( G );
    [ f1, f2, f3 ]
    gap> f[1]^4;
    f3
    gap> f[1]^12;
    identity of ...
    
    


  • conjugacy:
    The conjugacy classes of a group G are computed using the “ConjugacyClasses” command. This is a list of classes {x^-1*g*x | x in G}.

    gap> G:=SL(2,7);
    SL(2,7)
    gap> CG:=ConjugacyClasses(G);
    [ [ [ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^0 ] ]^G,
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, Z(7)^5 ] ]^G,
      [ [ 0*Z(7), Z(7)^4 ], [ Z(7)^5, Z(7)^5 ] ]^G,
      [ [ Z(7)^3, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ] ]^G,
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, Z(7)^2 ] ]^G,
      [ [ 0*Z(7), Z(7)^4 ], [ Z(7)^5, Z(7)^2 ] ]^G,
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, 0*Z(7) ] ]^G,
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, Z(7)^4 ] ]^G,
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, Z(7) ] ]^G,
      [ [ Z(7)^4, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ]^G,
      [ [ Z(7)^5, 0*Z(7) ], [ 0*Z(7), Z(7) ] ]^G ]
    gap> g:=Representative(CG[3]); Order(g);
    [ [ 0*Z(7), Z(7)^4 ], [ Z(7)^5, Z(7)^5 ] ]
    14
    gap> g:=Representative(CG[4]); Order(g);
    [ [ Z(7)^3, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ] ]
    2
    gap> g:=Representative(CG[5]); Order(g);
    [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, Z(7)^2 ] ]
    7
    gap> g:=Representative(CG[6]); Order(g);
    [ [ 0*Z(7), Z(7)^4 ], [ Z(7)^5, Z(7)^2 ] ]
    7
    gap>                            
    


  • presented
    To construct a finitely presented group in GAP, use the “FreeGroup” and “FpGroupPresentation” commands. Here is one example.

    gap> M12 := MathieuGroup( 12 );
    Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ])
    gap> F := FreeGroup( "a", "b", "c" );
    free group on the generators [ a, b, c ]
    gap> words := [ F.1, F.2 ];
    [ a, b ]
    gap> P := PresentationViaCosetTable( M12, F, words );
    presentation with 3 gens and 10 rels of total length 97
    gap> TzPrintRelators( P );
    #I  1. c^2
    #I  2. b^4
    #I  3. a*c*a*c*a*c
    #I  4. a*b^2*a*b^-2*a*b^-2
    #I  5. a^11
    #I  6. a^2*b*a^-2*b^2*a*b^-1*a^2*b^-1
    #I  7. a*b*a^-1*b*a^-1*b^-1*a*b*a^-1*b*a^-1*b^-1
    #I  8. a^2*b*a^2*b^2*a^-1*b*a^-1*b^-1*a^-1*b^-1
    #I  9. a*b*a*b*a^2*b^-1*a^-1*b^-1*a*c*b*c
    #I  10. a^4*b*a^2*b*a^-2*c*a*b*a^-1*c
    gap> G := FpGroupPresentation( P );
    fp group on the generators [ a, b, c ]
    gap> RelatorsOfFpGroup( G );  
    [ c^2, b^4, a*c*a*c*a*c, a*b^-2*a*b^-2*a*b^-2, a^11, a^2*b*a^-2*b^-2*a*b^-1*a^2*b^-1, a*b*a^-1*b*a^-1*b^-1*a*b*a^-1*b*a^-1*b^-1,
      a^2*b*a^2*b^-2*a^-1*b*a^-1*b^-1*a^-1*b^-1, a*b*a*b*a^2*b^-1*a^-1*b^-1*a*c*b*c, a^4*b*a^2*b*a^-2*c*a*b*a^-1*c ]
    gap> Size(M12);
    95040
    gap> Size(G);
    95040
    gap> IsomorphismGroups(G,M12); 
    ????????
    

    The last command is computationally intensive and requires more than the default memory allocation of 256M of RAM.

    Here is another example.

    gap> F := FreeGroup( "a", "b");
    free group on the generators [ a, b ]
    gap> G:=F/[F.1^2,F.2^3,F.1*F.2*F.1^(-1)*F.2^(-1)];
    fp group on the generators [ a, b ]
    gap> Size(G);
    6
    
    


  • rref
    The key command for row reduction is “TriangulizeMat”. The following example illustrates the syntax.

    gap> M:=[[1,2,3,4,5],[1,2,1,2,1],[1,1,0,0,0]];
    [ [ 1, 2, 3, 4, 5 ], [ 1, 2, 1, 2, 1 ], [ 1, 1, 0, 0, 0 ] ]
    gap> TriangulizeMat(M);
    gap> M;
    [ [ 1, 0, 0, -1, 1 ], [ 0, 1, 0, 1, -1 ], [ 0, 0, 1, 1, 2 ] ]
    gap> Display(M);
    [ [   1,   0,   0,  -1,   1 ],
      [   0,   1,   0,   1,  -1 ],
      [   0,   0,   1,   1,   2 ] ]
    gap> M:=Z(3)^0*[[1,2,3,4,5],[1,2,1,2,1],[1,1,0,0,0]];
    [ [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0, Z(3) ],
      [ Z(3)^0, Z(3), Z(3)^0, Z(3), Z(3)^0 ],
      [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ]
    gap> TriangulizeMat(M);
    gap> Display(M);
     1 . . 2 1
     . 1 . 1 2
     . . 1 1 2
    gap>
    


  • kernel:
    There are different methods for matrices over the integers and matrices over a field. For integer entries, related commands include “NullspaceIntMat” and “SolutionNullspaceIntMat” in section 25.1 “Linear equations over the integers and Integral Matrices” of the reference manual.

    gap> M:=[[1,2,3],[4,5,6],[7,8,9]];
    [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
    gap> NullspaceIntMat(M);
    [ [ 1, -2, 1 ] ]
    gap> SolutionNullspaceIntMat(M,[0,0,1]);
    [ fail, [ [ 1, -2, 1 ] ] ]
    gap> SolutionNullspaceIntMat(M,[0,0,0]);
    [ [ 0, 0, 0 ], [ [ 1, -2, 1 ] ] ]
    gap> SolutionNullspaceIntMat(M,[1,2,3]);
    [ [ 1, 0, 0 ], [ [ 1, -2, 1 ] ] ]
    
    

    Here (0,0,1) is not in the image of M
    (under v-> v*M) but (0,0,0) and (1,2,3) are.

    For field entries, related commands include “NullspaceMat” and “TriangulizedNullspaceMat” in section 24.6 “Matrices Representing Linear Equations and the Gaussian Algorithm”
    of the reference manual.

    gap> M:=[[1,2,3],[4,5,6],[7,8,9]];
    [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
    gap> NullspaceMat(M);
    [ [ 1, -2, 1 ] ]
    gap> TriangulizedNullspaceMat(M);
    [ [ 1, -2, 1 ] ]
    gap> M:=[[1,2,3,1,1],[4,5,6,1,1],[7,8,9,1,1],[1,2,3,1,1]];
    [ [ 1, 2, 3, 1, 1 ], [ 4, 5, 6, 1, 1 ], [ 7, 8, 9, 1, 1 ], 
      [ 1, 2, 3, 1, 1 ] ]
    gap> NullspaceMat(M);
    [ [ 1, -2, 1, 0 ], [ -1, 0, 0, 1 ] ]
    gap> TriangulizedNullspaceMat(M);
    [ [ 1, 0, 0, -1 ], [ 0, 1, -1/2, -1/2 ] ]
    
    
    


  • characteristic polynomial:
    Please see section 24.12.1 of the GAP reference manual for examples of characteristic polynomial of a square matrix (“CharacteristicPolynomial”) and section 56.3 for examples of the “characteristic polynomial” (called a “TracePolynomial”) of an element of a field extension.


  • character:
    GAP contains very extensive character theoretic functions and data libraries (including an interface the character table in the Atlas). Here is just one simple example.

    gap> G:=Group((1,2)(3,4),(1,2,3));
    Group([ (1,2)(3,4), (1,2,3) ])
    gap> T:=CharacterTable(G);
    CharacterTable( Alt( [ 1 .. 4 ] ) )
    gap> Display(T);
    CT1
    
         2  2  2  .  .
         3  1  .  1  1
    
           1a 2a 3a 3b
        2P 1a 1a 3b 3a
        3P 1a 2a 1a 1a
    
    X.1     1  1  1  1
    X.2     1  1  A /A
    X.3     1  1 /A  A
    X.4     3 -1  .  .
    
    A = E(3)^2
      = (-1-ER(-3))/2 = -1-b3
    gap> irr:=Irr(G);
    [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
      Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3)^2, E(3) ] ),
      Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3), E(3)^2 ] ),
      Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 3, -1, 0, 0 ] ) ]
    gap> Display(irr);
    [ [       1,       1,       1,       1 ],
      [       1,       1,  E(3)^2,    E(3) ],
      [       1,       1,    E(3),  E(3)^2 ],
      [       3,      -1,       0,       0 ] ]
    gap> chi:=irr[2]; gamma:=CG[3]; g:=Representative(gamma); g^chi;
    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3)^2, E(3) ] )
    (1,2,3)^G
    (1,2,3)
    E(3)^2
    
    

    For further details and examples, see chapters 6972 of the GAP reference manual.

  • brauer:
    Just a simple example of what GAP can do here. To construct a Brauer character table:

    gap> G:=Group((1,2)(3,4),(1,2,3));
    Group([ (1,2)(3,4), (1,2,3) ])
    gap> irr:=IrreducibleRepresentations(G,GF(7));
    [ [ (1,2)(3,4), (1,2,3) ] -> [ [ [ Z(7)^0 ] ], [ [ Z(7)^0 ] ] ],
      
    [ (1,2)(3,4), (1,2,3) ] -> [ [ [ Z(7)^0 ] ], [ [ Z(7)^4 ] ] ],
      
    [ (1,2)(3,4), (1,2,3) ] -> [ [ [ Z(7)^0 ] ], [ [ Z(7)^2 ] ] ],
      
    [ (1,2)(3,4), (1,2,3) ] -> [
          
    [ [ 0*Z(7), Z(7)^3, Z(7)^0 ], [ 0*Z(7), Z(7)^3, 0*Z(7) ], 
    [ Z(7)^0, Z(7)^3, 0*Z(7) ] ],
          [ [ 0*Z(7), Z(7)^0, 0*Z(7) ], 
    [ 0*Z(7), 0*Z(7), Z(7)^0 ], [ Z(7)^0, 0*Z(7), 0*Z(7) ] ]
         
    ] ]
    gap> brvals := List(irr,chi-> List(ConjugacyClasses(G),c->
    BrauerCharacterValue(Image(chi, Representative(c)))));
    [ [ 1, 1, 1, 1 ], [ 1, 1, E(3)^2, E(3) ], [ 1, 1, E(3), E(3)^2 ], 
    [ 3, -1, 0, 0 ] ]
    gap> Display(brvals);
    [ [       1,       1,       1,       1 ],
      
    [       1,       1,  E(3)^2,    E(3) ],
      
    [       1,       1,    E(3),  E(3)^2 ],
      
    [       3,      -1,       0,       0 ] ]
    gap>                                               
    

    List(ConjugacyClasses(G),c->BrauerCharacterValue(Image(chi, Representative(c)))));
    #Display(brvals);
    T:=CharacterTable(G);
    Display(T);
    –>


  • polynomial
    There are various ways to construct a polynomial in GAP.

    gap> Pts:=Z(7)^0*[1,2,3];
    [ Z(7)^0, Z(7)^2, Z(7) ]
    gap> Vals:=Z(7)^0*[1,2,6];
    [ Z(7)^0, Z(7)^2, Z(7)^3 ]
    gap> g:=InterpolatedPolynomial(GF(7),Pts,Vals);
    Z(7)^5*x_1^2+Z(7)
    

    Or:

    gap> p:=3;; F:=GF(p);;
    gap> R:=PolynomialRing(F,["x1","x2"]);
    PolynomialRing(..., [ x1, x2 ])
    gap> vars:=IndeterminatesOfPolynomialRing(R);;
    gap> x1:=vars[1]; x2:=vars[2];
    x1
    x2
    gap> p:=x1^5-x2^5;
    x1^5-x2^5
    gap> DivisorsMultivariatePolynomial(p,R);
    [ x1^4+x1^3*x2+x1^2*x2^2+x1*x2^3+x2^4, x1-x2 ]
    

    Or:

    gap> x:=X(Rationals);
    x_1
    gap> f:=x+x^2+1;
    x_1^2+x_1+1
    gap> Value(f,[x],[1]);
    3
    


  • factor
    To factor a polynomial in GAP, there is one command for univariate polynomials (“Factors”) and another command for multivariate polynomials (“DivisorsMultivariatePolynomial”). For a factoring a univariate polynomial, GAP provides only methods over finite fields and over subfields of cyclotomic fields. Please see the examples given in section 64.10 “Polynomial Factorization” for more details. For multivariate polynomials, a very slow algorithm has been implemented in GAP and an interface to a very fast algorithm in Singular has been implemented for those who have both Singular and the GAP Singular package installed. The former of these was illustrated above in “polynomial” above. (Again, the ground field must be a finite field or a subfields of cyclotomic fields.) For the latter, please see the example in the (GAP-)Singular manual FactorsUsingSingularNC.


  • roots
    There are some situations where GAP can find the roots of a polynomial but GAP does not do this generally. (The roots must generate either a finite field or a subfield of a cyclotomic field.) However, there is a package called RadiRoot which must be installed which does help to do this for polynomials with rational coefficients (radiroot itself requires other packages to be installed; please see the webpage for more details). The “Factors” command actually has an option which allows you to increase the groundfield so that a factorization actually returns the roots. Please see the examples given in section 64.10 “Polynomial Factorization” for more details. Here is a second approach.

    gap> p:=3; n:=4; F:=GF(p^n); c:=Random(F); r:=2;
    3
    4
    GF(3^4)
    Z(3^4)^79
    2
    gap>  x:=X(F,1); f:=x^r-c*x+c-1;
    x_1
    x_1^2+Z(3^4)^39*x_1+Z(3^4)^36
    gap>  F_f:=FieldExtension( F, f );
    AsField( GF(3^4), GF(3^8) )
    gap>  alpha:=RootOfDefiningPolynomial(F_f);
    Z(3^4)^36
    gap> Value(f,[x],[alpha]);
    0*Z(3)
    
    

    Here is a third. First, enter the following program

    RootOfPolynomial:=function(f,R)
     local F0,Ff,a;
     F0:=CoefficientsRing(R);
     Ff:=FieldExtension(F0,f);
     a:=RootOfDefiningPolynomial(Ff);
     return a;
    end;
    

    Here’s how this can be used to find a root:

    gap> F:=Rationals;
    Rationals
    gap> x:=X(F,1); f:=x^2+x+1;
    x_1
    x_1^2+x_1+1
    gap> R:=PolynomialRing( F, [ x ]);
    PolynomialRing(..., [ x_1 ])
    gap> a:=RootOfPolynomial(f,R);
    E(3)
    gap> # check:
    gap> Value(f,[x],[a]);
    0
    

    Related links:

    1. In the GAP Forum: Hensel lifting discussion.
    2. In the manual, Galois groups.

  • evaluate:
    The relevant command is “Value”. There are several examples already on this page. For others, please see the examples given in section 64.7 Multivariate polynomials of the manual. For sparse uivariate polynomials, there is also the command “ValuePol” in section 23.6 of the manual.


  • integer power
    This is easy and intuitive:

    gap> a:=1000; n:=100000; m:=123;
    1000
    100000
    123
    gap> a^n mod m;
    1
    
    


  • matrix power:
    This too is easy and intuitive:

    gap> A:=[[1,2],[3,4]]; n:=100000; m:=123;
    [ [ 1, 2 ], [ 3, 4 ] ]
    100000
    123
    gap> A^n mod m;
    [ [ 1, 41 ], [ 0, 1 ] ]
    

  • polynomial power
    GAP allows you to do arithmetic over the polynomial ring R[x], where R = Z/nZ (where n is a positive integer). Here’s an example.

    gap> Z4:=ZmodnZ(4);
    (Integers mod 4)
    gap> R:=UnivariatePolynomialRing(Z4,1);
    PolynomialRing(..., [ x ])
    gap> x:=IndeterminatesOfPolynomialRing(R)[1];
    x
    gap> I:=TwoSidedIdealByGenerators( R,[x^8-x^0]);
    two-sided ideal in PolynomialRing(..., [ x ]), (1 generators)
    gap> gen:=x^8-x^0;
    x8-ZmodnZObj(1,4)
    gap> QuotientRemainder(R,x^8,gen);
    [ ZmodnZObj(1,4), ZmodnZObj(1,4) ]
    gap> QuotientRemainder(R,x^15,gen);
    [ x^7, x^7 ]
    gap> QuotientRemainder(R,x^15+x^8,gen);
    [ x^7+ZmodnZObj(1,4), x^7+ZmodnZObj(1,4) ]
    gap> PowerMod( R, x+x^0, 15, gen );
    ZmodnZObj(0,4)
    gap> PowerMod( R, x, 15, gen );
    x^7
    
    


  • Groebner basis
    GAP’s Groebner bases algorithms are relatively slow and are included mostly for simple examples and for teaching purposes. However, a GAP interface to a very fast algorithm in Singular has been implemented for those who have both Singular and the GAP Singular package installed. The former of these is illustrated in section 64.17 Groebner bases of the GAP manual. For the latter, please see the example in the (GAP-)Singular manual GroebnerBasis.


  • normal subgroup:
    Here is an example:

    gap> G := AlternatingGroup( 5 );
    Group( (1,2,5), (2,3,5), (3,4,5) )
    gap> normal := NormalSubgroups( G );
    [ Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), [  ] ), 
      Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (1,2)(3,4), (1,3)(4,5), (1,4)(2,3) ] ) ]
    

    Related links:

    1. Please see Volkmar Felsch’s GAP Forum response to a related question.
    2. The xgap package (or, on a mac, Gap.app) displays subgroup lattices graphically.

  • abelian subgroup
    One idea to compute all the abelian subgroups is to compute all the subgroups then “filter” out the abelian ones. Here is an illustration, taked from a GAP Forum response Volkmar Felsch.

    gap> G := AlternatingGroup( 5 );
    Group( (1,2,5), (2,3,5), (3,4,5) )
    gap> classes := ConjugacyClassesSubgroups( G );
    [ ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), [  ] ) ),
      ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (2,3)(4,5) ] ) ), ConjugacyClassSubgroups( Group( (1,2,5), 
        (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (3,4,5) ] ) ), ConjugacyClassSubgroups( Group( (1,2,5), 
        (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (2,3)(4,5), (2,4)(3,5) ] ) ), ConjugacyClassSubgroups( Group( 
        (1,2,5), (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), [ (1,2,3,4,5) ] ) ), ConjugacyClassSubgroups( Group( 
        (1,2,5), (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), [ (3,4,5), (1,2)(4,5) ] ) ), 
      ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (1,2,3,4,5), (2,5)(3,4) ] ) ), ConjugacyClassSubgroups( Group( 
        (1,2,5), (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), [ (2,3)(4,5), (2,4)(3,5), (3,4,5) ] ) ), 
      ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), (3,4,5) ), Group( 
        (1,2,5), (2,3,5), (3,4,5) ) ) ]
    gap> cl := classes[4];
    ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
    (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
    [ (2,3)(4,5), (2,4)(3,5) ] ) )
    gap> length := Size( cl );
    5
    gap> rep := Representative( cl );
    Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
    [ (2,3)(4,5), (2,4)(3,5) ] )
    gap> order := Size( rep );
    4
    gap> IsAbelian( rep );
    true
    gap> abel := Filtered( classes, cl -> IsAbelian( Representative( cl ) ) );
    [ ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), [  ] ) ),
      ConjugacyClassSubgroups( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (2,3)(4,5) ] ) ), ConjugacyClassSubgroups( Group( (1,2,5), 
        (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (3,4,5) ] ) ), ConjugacyClassSubgroups( Group( (1,2,5), 
        (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), (3,4,5) ), 
        [ (2,3)(4,5), (2,4)(3,5) ] ) ), ConjugacyClassSubgroups( Group( 
        (1,2,5), (2,3,5), (3,4,5) ), Subgroup( Group( (1,2,5), (2,3,5), 
        (3,4,5) ), [ (1,2,3,4,5) ] ) ) ]
    

  • homology
    This depends on how the group is given. For example, suppose that G is a permutation group with generators genG and H is a permutation group with generators genH. To find a homomorphism from G to H, one may use the “GroupHomomorphismByImages” or “GroupHomomorphismByImagesNC” commands. For examples of the syntax, please see section 38.1 Creating Group Homomorphisms. Here’s an illustration of how to convert a finitely presented group into a permutation group.

    gap> p:=7;
    7
    gap> G:=PSL(2,p);
    Group([ (3,7,5)(4,8,6), (1,2,6)(3,4,8) ])
    gap> H:=SchurCover(G);
    fp group of size 336 on the generators [ f1, f2, f3 ]
    gap> iso:=IsomorphismPermGroup(H);
    [ f1, f2, f3 ] -> [ (1,2,4,3)(5,9,7,10)(6,11,8,12)(13,14,15,16),
      (2,5,6)(3,7,8)(11,13,14)(12,15,16), (1,4)(2,3)(5,7)(6,8)(9,10)(11,12)(13,
        15)(14,16) ]
    gap> H0:=Image(iso);                       # 2-cover of PSL2
    Group([ (1,2,4,3)(5,9,7,10)(6,11,8,12)(13,14,15,16),
      (2,5,6)(3,7,8)(11,13,14)(12,15,16), (1,4)(2,3)(5,7)(6,8)(9,10)(11,12)(13,
        15)(14,16) ])
    gap> IdGroup(H0);
    [ 336, 114 ]
    gap> IdGroup(SL(2,7));
    [ 336, 114 ]
    gap>                
    

  • semi-direct product(Contributed by Nilo de Roock):
    As you can easily verify, D8 is isomorphic to C2:C4. Or in GAP…

    N:=CyclicGroup(IsPermGroup,4);
    G:=CyclicGroup(IsPermGroup,2);
    AutN:=AutomorphismGroup(N);
    f:=GroupHomomorphismByImages(G,AutN,GeneratorsOfGroup(G),[Elements(AutN)[2]]);
    NG:=SemidirectProduct(G,f,N);
    

    Verify with

    StructureDescription(NG);
    

  • semi-direct products(Contributed by Nilo de Roock):
    The following shows how to construct all non-abelian groups of order 12 as semi-direct products. These products are not trivial yet small enough to verify by hand.

    #D12 = (C2 x C2) : C3
    G1:=CyclicGroup(IsPermGroup,2);
    G2:=CyclicGroup(IsPermGroup,2);
    G:=DirectProduct(G1,G2);
    N:=CyclicGroup(IsPermGroup,3);
    AutN:=AutomorphismGroup(N);
    f:=GroupHomomorphismByImages(G,AutN,[Elements(G)[1],Elements(G)[2],Elements(G)[3],Elements(G)[4]],[Elements(AutN)[1],Elements(AutN)[2],Elements(AutN)[1],Elements(AutN)[2]]);
    NG:=SemidirectProduct(G,f,N);
    Print(str(NG));
    Print("\n");
    
    #T = C4 : C3
    G:=CyclicGroup(IsPermGroup,4);
    N:=CyclicGroup(IsPermGroup,3);
    AutN:=AutomorphismGroup(N);
    f:=GroupHomomorphismByImages(G,AutN,[Elements(G)[1],Elements(G)[2],Elements(G)[3],Elements(G)[4]],[Elements(AutN)[1],Elements(AutN)[2],Elements(AutN)[1],Elements(AutN)[2]]);
    NG:=SemidirectProduct(G,f,N);
    Print(str(NG));
    Print("\n");
    
    #A4 = C3 : (C2 x C2)
    G:=CyclicGroup(IsPermGroup,3);
    N1:=CyclicGroup(IsPermGroup,2);
    N2:=CyclicGroup(IsPermGroup,2);
    N:=DirectProduct(G1,G2);
    AutN:=AutomorphismGroup(N);
    f:=GroupHomomorphismByImages(G,AutN,[Elements(G)[1],Elements(G)[2],Elements(G)[3]],[Elements(AutN)[1],Elements(AutN)[4],Elements(AutN)[5]]);
    NG:=SemidirectProduct(G,f,N);
    Print(str(NG));
    Print("\n");
    

  • cohomology
    GAP will compute the Schur multiplier H2(G,C) using the
    “AbelianInvariantsMultiplier” command. Here is an example showing how to find H2(A5,C), where A5 is the alternating group on 5 letters.

    gap> A5:=AlternatingGroup(5);
    Alt( [ 1 .. 5 ] )
    gap> AbelianInvariantsMultiplier(A5);
    [ 2 ]
    

    So, H2(A5,C) is Z/2Z.

    Related links:

    1. See section 37.23 and section 37.24 of the GAP manual.
    2. See D. Holt’s GAP package cohomolo.

“Circle decoding” of the [7,4,3] Hamming code

This is a well-known trick but I’m posting it here since I often have a hard time tracking it down when I need it for an introductory coding theory talk or something. Hopefully someone else will find it amusing too!

Let F = GF(2) and let C be the set of all vectors in the third column below (for simplicity, we omit commas and parentheses, so 0000000 is written instead of (0,0,0,0,0,0,0), for example).

The [7,4,3] Hamming code
  decimal     binary     Hamming [7,4] 
0 0000 0000000
1 0001 0001110
2 0010 0010101
3 0011 0011011
4 0100 0100011
5 0101 0101101
6 0110 0110110
7 0111 0111000
8 1000 1000111
9 1001 1001001
10 1010 1010010
11 1011 1011100
12 1100 1100100
13 1101 1101010
14 1110 1110001
15 1111 1111111

This is a linear code of length 7, dimension 4, and minimum distance 3. It is called the Hamming [7,4,3]-code.
In fact, there is a mapping from F^4 to C given by \phi(x_1,x_2,x_3,x_4)={\bf y}, where
{\bf y}= \left( \begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{array} \right) = \left( \begin{array}{cccc} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \\ 1&0&1&1 \\ 1&1&0&1 \\ 1&1&1&0 \end{array} \right) \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} \right) \ \pmod{2}. Moreover, the matrix G=\left(\begin{array}{ccccccc} 1&0&0&0&1&1&1 \\ 0&1&0&0&0&1&1 \\ 0&0&1&0&1&0&1 \\ 0&0&0&1&1&1&0 \end{array}\right) is a generator matrix.

Now, suppose a codeword c \in C is sent over a noisy channel and denote the received word by {\bf w}=(w_1,w_2,w_3,w_4,w_5,w_6,w_7). We assume at most 1 error was made.

  1. Put w_i in the region of the Venn diagram above associated to coordinate i in the table below, i=1,2,...,7.
  2. Do parity checks on each of the circles A, B, and C.

Decoding table
  parity failure region(s)     error position  
none none
A, B, and C 1
B and C 2
A and C 3
A and B 4
A 5
B 6
C 7

Exercise: Decode {\bf w} = (0,1,0,0,0,0,1) in the binary Hamming code using this algorithm.
(This is solved at the bottom of this column.)

In his 1976 autobiography Adventures of a Mathematician, Stanislaw Ulam [U] poses the following problem:

Someone thinks of a number between one and one million (which is just less than 220). Another person is allowed to ask up to twenty questions, to which the first person is supposed to answer only yes or no. Obviously, the number can be guessed by asking first: Is the number in the first half-million? and then again reduce the reservoir of numbers in the next question by one-half, and so on. Finally, the number is obtained in less than log2(1000000). Now suppose one were allowed to lie once or twice, then how many questions would one need to get the right answer?

We define Ulam’s Problem as follows: Fix integers M\geq 1 and e\geq 0. Let Player 1 choose the number from the set of integers 0,1, ...,M and Player 2 ask the yes/no questions to deduce the number, to which Player 1 is allowed to lie at most e times. Player 2 must discern which number Player 1 picked with a minimum number of questions with no feedback (in other words, all the questions must be provided at once)

As far as I know, the solution to this version of Ulam’s problem without feedback is still unsolved if e=2. In the case e=1, see [N] and [M]. (Also, [H] is a good survey.)

Player 1 has to convert his number to binary and encode it as a Hamming [7,4,3] codeword. A table containing all 16 codewords is included above for reference. Player 2 then asks seven questions of the form, “Is the i-th bit of your 7-tuple a 1?” Player 1’s answers form the new 7-tuple, (c_1,c_2,...,c_7), and each coordinate is placed in the corresponding region of the circle. If Player 1 was completely truthful, then the codeword’s parity conditions hold. This means that the 7-tuple generated by Player 2’s questions will match a 7-tuple from the codeword table above. At this point, Player 2 just has to decode his 7-tuple into an integer using the codeword table above to win the game. A single lie, however, will yield a 7-tuple unlike any in the codeword table. If this is the case, Player 2 must error-check the received codeword using the three parity check bits and the decoding table above. In other words, once Player 2 determines the position of the erroneous bit, he corrects it by “flipping its bit”. Decoding the corrected codeword will yield Player 1’s original number.

References

[H] R. Hill, “Searching with lies,” in Surveys in Combinatorics, ed. by P. Rowlinson, London Math Soc, Lecture Notes Series # 218.

[M] J. Montague, “A Solution to Ulam’s Problem with Error-correcting Codes”

[N] I. Niven, “Coding theory applied to a problem of Ulam,” Math Mag 61(1988)275-281.

[U] S. Ulam, Adventures of a mathematician, Scribner and Sons, New York, 1976 .


Solution to exercise using SAGE:


sage: MS = MatrixSpace(GF(2), 4, 7)
sage: G = MS([[1,0,0,0,1,1,1],[0,1,0,0,0,1,1],[0,0,1,0,1,0,1],[0,0,0,1,1,1,0]])
sage: C = LinearCode(G)
sage: V = VectorSpace(GF(2), 7)
sage: w = V([0,1,0,0,0,0,1])
sage: C.decode(w)
(0, 1, 0, 0, 0, 1, 1)

In other words, Player picked 4 and lied on the 6th question.

Here is a Sage subtlety:

sage: C = HammingCode(3, GF(2))
sage: C
Linear code of length 7, dimension 4 over Finite Field of size 2
sage: V = VectorSpace(GF(2), 7)
sage: w = V([0,1,0,0,0,0,1])
sage: C.decode(w)
(1, 1, 0, 0, 0, 0, 1)

Why is this decoded word different? Because the Sage Hamming code is distinct (though “equivalent” to) the Hamming code we used in the example above.

Unfortunately, SAGE does not yet do code isomorphisms (at least not as easily as GUAVA), so we use GUAVA’s CodeIsomorphism function, which calls J. Leon’s GPL’s desauto C code function:


gap> C1 := GeneratorMatCode([[1,0,0,1,0,1,0],[0,1,0,1,0,1,1],[0,0,1,1,0,0,1],[0,0,0,0,1,1,1]],GF(2));
a linear [7,4,1..3]1 code defined by generator matrix over GF(2)
gap> C2 := GeneratorMatCode([[1,0,0,0,1,1,1],[0,1,0,0,0,1,1],[0,0,1,0,1,0,1],[0,0,0,1,1,1,0]],GF(2));
a linear [7,4,1..3]1 code defined by generator matrix over GF(2)
gap> CodeIsomorphism(C1,C2);
(2,6,7,3)
gap> Display(GeneratorMat(C1));
1 . . 1 . 1 .
. 1 . 1 . 1 1
. . 1 1 . . 1
. . . . 1 1 1
gap> Display(GeneratorMat(C2));
1 . . . 1 1 1
. 1 . . . 1 1
. . 1 . 1 . 1
. . . 1 1 1 .

Now we see that the permutation (2,6,7,3) sends the “SAGE Hamming code” to the “circle Hamming code”:


sage: H = HammingCode(3, GF(2))
sage: G = MS([[1,0,0,0,1,1,1],[0,1,0,0,0,1,1],[0,0,1,0,1,0,1],[0,0,0,1,1,1,0]])
sage: C = LinearCode(G)
sage: C.gen_mat()
[1 0 0 0 1 1 1]
[0 1 0 0 0 1 1]
[0 0 1 0 1 0 1]
[0 0 0 1 1 1 0]
sage: S7 = SymmetricGroup(7)
sage: g = S7([(2,6,7,3)])
sage: H.permuted_code(g) == C
True