Harmonic quotients of regular graphs – examples

Caroline Melles and I have written a preprint that collects numerous examples of harmonic quotient morphisms \phi : \Gamma_2 \to \Gamma_1, where \Gamma_1=\Gamma_2/G is a quotient graph obtained from some subgroup G \subset Aut(\Gamma_2). The examples are for graphs having a small number of vertices (no more than 12). For the most part, we also focused on regular graphs with small degree (no more than 5). They were all computed using SageMath and a module of special purpose Python functions I’ve written (available on request). I’ve not counted, but the number of examples is relatively large, maybe over one hundred.

I’ll post it to the math arxiv at some point but if you are interested now, here’s a copy: click here for pdf.

Coding Theory and Cryptography

This was once posted on my USNA webpage. Since I’ve retired, I’m going to repost it here.

Coding Theory and Cryptography:
From Enigma and Geheimschreiber to Quantum Theory

(David Joyner, ed.) Springer-Verlag, 2000.
ISBN 3-540-66336-3

Summary: These are the proceedings of the “Cryptoday” Conference on Coding Theory, Cryptography, and Number Theory held at the U. S. Naval Academy during October 25-26, 1998. This book concerns elementary and advanced aspects of coding theory and cryptography. The coding theory contributions deal mostly with algebraic coding theory. Some of these papers are expository, whereas others are the result of original research. The emphasis is on geometric Goppa codes, but there is also a paper on codes arising from combinatorial constructions. There are both, historical and mathematical papers on cryptography.
Several of the contributions on cryptography describe the work done by the British and their allies during World War II to crack the German and Japanese ciphers. Some mathematical aspects of the Enigma rotor machine and more recent research on quantum cryptography are described. Moreover, there are two papers concerned with the RSA cryptosystem and related number-theoretic issues.

Chapters

  • Reminiscences and Reflections of a Codebreaker, by Peter Hilton pdf
  • FISH and I, by W. T. Tutte pdf
  • Sturgeon, The FISH BP Never Really Caught, by Frode Weierud, pdf
  • ENIGMA and PURPLE: How the Allies Broke German and Japanese Codes During the War, by David A. Hatch pdf
  • The Geheimschreiber Secret, by Lars Ulfving, Frode Weierud pdf
  • The RSA Public Key Cryptosystem, by William P. Wardlaw pdf
  • Number Theory and Cryptography (using Maple), by John Cosgrave pdf
  • A Talk on Quantum Cryptography or How Alice Outwits Eve, by Samuel J. Lomonaco, Jr. pdf
  • The Rigidity Theorems of Hamada and Ohmori, Revisited, by T. S. Michael pdf
  • Counting Prime Divisors on Elliptic Curves and Multiplication in Finite Fields, by M. Amin Shokrollahi pdf,
  • On Cyclic MDS-Codes, by M. Amin Shokrollahi pdf
  • Computing Roots of Polynomials over Function Fields of Curves, by Shuhong Gao, M. Amin Shokrollahi pdf
  • Remarks on codes from modular curves: MAPLE applications, by David Joyner and Salahoddin Shokranian, pdf

For more cryptologic history, see the National Cryptologic Museum.


This is now out of print and will not be reprinted (as far as I know). The above pdf files are posted by written permission. I thank Springer-Verlag for this.

The truncated tetrahedron covers the tetrahedron

At first, you might think this is obvious – just “clip” off each corner of the tetrahedron \Gamma_1 to create the truncated tetrahedron \Gamma_2 (by essentially creating a triangle from each of these clipped corners – see below for the associated graph). Then just map each such triangle to the corresponding vertex of the tetrahedron. No, it’s not obvious because the map just described is not a covering. This post describes one way to think about how to construct any covering.

First, color the vertices of the tetrahedron in some way.

\Gamma_1

The coloring below corresponds to a harmonic morphism \phi : \Gamma_2\to \Gamma_1:

\Gamma_2

All others are obtained from this by permuting the colors. They are all covers of \Gamma_1 = K_4 – with no vertical multiplicities and all horizontal multiplicities equal to 1. These 24 harmonic morphisms of \Gamma_2\to\Gamma_1 are all coverings and there are no other harmonic morphisms.

Quartic graphs with 12 vertices

This is a continuation of the post A table of small quartic graphs. As with that post, it’s modeled on the handy wikipedia page Table of simple cubic graphs.

According to SageMath computations, there are 1544 connected, 4-regular graphs. Exactly 2 of these are symmetric (ie, arc transitive), also vertex-transitive and edge-transitive. Exactly 8 of these are vertex-transitive but not edge-transitive. None are distance regular.

Example 1: The first example of such a symmetric graph is the circulant graph with parameters (12, [1,5]), depicted below. It is bipartite, has girth 4, and its automorphism group has order 768, being generated by (9,11), (5,6), (4,8), (2,10), (1,2)(5,9)(6,11)(7,10), (1,7), (0,1)(2,5)(3,7)(4,9)(6,10)(8,11).

Example 2: The second example of such a symmetric graph is the cuboctahedral graph, depicted below. It has girth 3, chromatic number 3, and its automorphism group has order 48, being generated by (1,10)(2,7)(3,6)(4,8)(9,11), (1,11)(3,4)(6,8)(9,10), (0,1,9)(2,8,10)(3,7,11)(4,5,6).

The Riemann-Hurwitz formula for regular graphs

A little over 10 years ago, M. Baker and S. Norine (I’ve also seen this name spelled Norin) wrote a terrific paper on harmonic morphisms between simple, connected graphs (see “Harmonic morphisms and hyperelliptic graphs” – you can find a downloadable pdf on the internet of you google for it). Roughly speaking, a harmonic function on a graph is a function in the kernel of the graph Laplacian. A harmonic morphism between graphs is, roughly speaking, a map from one graph to another that preserves harmonic functions.

They proved quite a few interesting results but one of the most interesting, I think, is their graph-theoretic analog of the Riemann-Hurwitz formula. We define the genus of a simple connected graph \Gamma = (V,E) to be

{\rm genus}(\Gamma) = |E| - |V | + 1.


It represents the minimum number of edges that must be removed from the graph to make it into a tree (so, a tree has genus 0).

Riemann-Hurwitz formula (Baker and Norine): Let \phi:\Gamma_2\to \Gamma_1 be a harmonic morphism from a graph \Gamma_2 = (V_2,E_2) to a graph \Gamma_1 = (V_1, E_1). Then

{\rm genus}(\Gamma_2)-1 = {\rm deg}(\phi)({\rm genus}(\Gamma_1)-1)+\sum_{x\in V_2} [m_\phi(x)+\frac{1}{2}\nu_\phi(x)-1].

I’m not going to define them here but m_\phi(x) denotes the horizontal multiplicity and \nu_\phi(x) denotes the vertical multiplicity.

I simply want to record a very easy corollary to this, assuming \Gamma_2 = (V_2,E_2) is k_2-regular and \Gamma_1 = (V_1, E_1) is k_1-regular.

Corollary: Let \Gamma_2 \rightarrow \Gamma_1 be a non-trivial harmonic morphism from a connected k_2-regular graph
to a connected k_1-regular graph.
Then

\sum_{x\in V_2}\nu_\phi(x) = k_2|V_2| - k_1|V_1|\deg (\phi).

The number-theoretic side of J. Barkley Rosser

By chance, I ran across a reference to a paper of J Barkey Rosser and it brought back fond memories of days long ago when I would browse the stacks in the math dept library at the University of Washington in Seattle. I remember finding papers describing number-theoretic computations of Rosser and Schoenfeld. I knew nothing about Rosser. Was he a number theorist?

j-barkley-rosser1

J. Barkley Rosser, taken at Math meeting in Denver

Here’s all I could glean from different sources on the internet:
J. Barkley Rosser was born in Jacksonville, Florida in 1907. He earned both his Bachelor of Science (1929) and his Master of Science (1931) from the University of Florida. Both degrees were in physics. He obtained his Ph.D. in mathematics (in fact, mathematical logic) from Princeton University in 1934, under the supervision of Alonso Church. After getting his Ph.D., Rosser taught at Princeton, Harvard, and Cornell and spent the latter part of his career at the University of Wisconsin-Madison. As a logician, Rosser is known for his part in the Church-Rosser Theorem and the Kleene–Rosser Paradox in lambda calculus. Moreover, he served as president of the Association for Symbolic Logic. As an applied mathematician, he served as president of the Society of Industrial and Applied Mathematics (otherwise known as SIAM). While at the University of Wisconsin-Madison, he served as the director of the U.S. Army Mathematics Research Center. He continued to lecture well into his late 70s, and passed away at his home in Madison in 1989. He has a son, J. Barkley Rosser Jr, who’s an economist at James Madison University.

What about Schoenfeld?

Lowell_Schoenfeld

Lowell Schoenfeld spent his early years in New York City, graduating Cum Laude from the College of the City of New York in 1940. He went on to MIT to earn a Master’s. He received his Ph.D. in 1944 from the University of Pennsylvania under the direction of Hans Rademacher. (During his years in graduate school, he seems to have worked for the Philadelphia Navy Yard as well, writing reports on aircraft navigational computers.) After positions at Temple University and Harvard, he moved to the University of Illinois, where he met his future wife. He met Josephine M. Mitchell when she was a tenured Associate Professor and he was an untenured Assistant Professor. After they married, the University would no longer allow Mitchell to teach, so the couple both resigned their positions and eventually settled at Pennsylvania State University. They spent about 10 years there but in 1968 the couple moved to the University of Buffalo, where they remained until their retirements in the 1980s.

As far as I can tell, these are the papers they wrote together, all in analytic number theory:

[1] Rosser, J. Barkley; Schoenfeld, Lowell. “Approximate formulas for some functions of prime numbers”. Illinois J. Math. 6 (1962), no. 1, 64–94.
[2] Rosser, J. Barkley; Schoenfeld, Lowell; J.M. Yohe. “Rigorous Computation and the Zeros of the Riemann Zeta-Function,” 1969
[3] Rosser, J. Barkley; Schoenfeld, Lowell. “Sharper Bounds for the Chebyshev Functions \theta (x) and \psi (x)” Mathematics of Computation Vol. 29, No. 129 (Jan., 1975), pp. 243-269
[4] Rosser, J. Barkley; Schoenfeld, Lowell. “Approximation of the Riemann Zeta-Function” 1971.

I haven’t seen a copy of the papers [2] and [4] in years but I’m guessing these are what I looked at as a teenager in Seattle, years ago, wandering through the stacks at the UW.

Rosser also wrote papers on topics in recreational mathematics, such as magic squares. Two such papers were co-written with R.J. Walker from Cornell University, who’s more well-known for his textbook Algebraic Curves:

Rosser, Barkley; Walker, R. J. “The algebraic theory of diabolic magic squares,” Duke Math. J. 5 (1939), no. 4, 705–728
Rosser, Barkley; Walker, R. J. “On the transformation group for diabolic magic squares of order four,” Bull. Amer. Math. Soc. 44 (1938), no. 6, 416–420.

Diabolic magic squares, also called pan-diagonal magic squares, are n\times n squares of integers 1, 2, ..., n^2 whose rows all add to a constant C, whose columns all add to C, whose diagonals both add to C, and whose “broken diagonals” all add to C. An example was given by the German artist Albrecht Durer in the 1514 engraving called Melencolia I: (where C=34):

melencolia_i_1943.3.3522_diabolic-magic-square

I wish I knew more about this number-theoretic side of Rosser. He’s a very  interesting mathematician.

Harmonic morphisms from cubic graphs of order 8 to a graph of order 4

There are five simple cubic graphs of order 8 (listed here) and there are 6 connected graphs of order 4 (listed here). But before we get started, I have a conjecture.

Let \Gamma_1 be a simple graph on n1 vertices, \Gamma_2 a simple graph on n2 vertices, and assume there is a harmonic morphism \phi:\Gamma_1 \to \Gamma_2. Call an n1-tuple of “colors” \{0,1,2,..., n2-1\} a harmonic color list (HCL) if it’s attached to a harmonic morphism in the usual way (the ith coordinate is j if \phi sends vertex i of \Gamma_1 to vertex j of \Gamma_2). Let S be the set of all such HCLs. The automorphism group G_1 of \Gamma_1 acts on S (by permuting coordinates associated to the vertices of \Gamma_1, as does the automorphism group G_2 of \Gamma_2 (by permuting the “colors” associated to the vertices of \Gamma_2). These actions commute. Clearly S decomposes as a disjoint union of distinct G_1\times G_2 orbits. The conjecture is that there is only one such orbit.

Note: Caroline Melles has disproven this conjecture. Still, the question of the number of orbits is an interesting one, IMHO.

Onto the topic of the post! The 6 connected graphs of order 4 are called P4 (the path graph), D3 (the star graph, also K_{3,1}), C4 (the cycle graph), K4 (the complete graph), Paw (C3 with a “tail”), and Diamond (K4 but missing an edge). All these terms are used on graphclasses.org. The results below were obtained using SageMath.

  1. We start with the graph \Gamma_1 listed 1st on wikipedia’s Table of simple cubic graphs and defined using the sage code sage: Gamma1 = graphs.LCFGraph(8, [2, 2, -2, -2], 2). This graph \Gamma_1 has diameter 3, girth 3, and its automorphism group G is generated by (5,6), (1,2), (0,3)(4,7), (0,4)(1,5)(2,6)(3,7), |G|=16. This graph is not vertex transitive. Its characteristic polynomial is x^8 - 12x^6 - 8x^5 + 38x^4 + 48x^3 - 12x^2 - 40x - 15. Its edge connectivity and vertex connectivity are both 2. This graph has no non-trivial harmonic morphisms to D3 or P4 or C4 or Paw. However, there are 48 non-trivial harmonic morphisms to \Gamma_2=K4. For example,
    3regular8a-K4-32103210 (the automorphism group of K4, ie the symmetric group of degree 4, acts on the colors {0,1,2,3} and produces 24 total plots), and 3regular8a-K4-01230213 (again, the automorphism group of K4, ie the symmetric group of degree 4, acts on the colors {0,1,2,3} and produces 24 total plots). There are 8 non-trivial harmonic morphisms to \Gamma_2={\rm Diamond}. For example, 3regular8a-Diamond-12033201 and 3regular8a-Diamond-10233201Here the automorphism group of K4, ie the symmetric group of degree 4, acts on the colors {0,1,2,3}, while the automorphism group of the graph \Gamma_1 acts by permuting some of the coordinates, for example, it can swap the 5th and 6th coordinates.Next, we take for \Gamma_1 the graph listed 2nd on wikipedia’s Table of simple cubic graphs and defined using the sage code sage: Gamma1 = graphs.LCFGraph(8, [4, -2, 4, 2], 2). This graph \Gamma_1 has diameter 3, girth 3, and its automorphism group G is generated by (1,7)(2,6)(3,5), (0,4)(1,3)(5,7), |G|=4 (obviously too small to act transitively on the vertices). Its characteristic polynomial is x^8 - 12x^6 - 4x^5 + 38x^4 + 16x^3 - 36x^2 - 12x + 9, its edge connectivity and vertex connectivity are both 3. This graph has no non-trivial harmonic morphisms to D3 or P4 or C4 or Paw or K4. However, it has 4 non-trivial harmonic morphisms to Diamond. They are:
    3regular8b-Diamond-32103210 3regular8b-Diamond-301230123regular8b-Diamond-123012303regular8b-Diamond-10321032Let \Gamma_1 denote the graph listed 3rd on wikipedia’s Table of simple cubic graphs and defined using the sage code sage: Gamma1 = graphs.LCFGraph(8, [2, 4, -2, 3, 3, 4, -3, -3], 1). This graph \Gamma_1 has diameter 2, girth 3, and its automorphism group G is generated by (4,6), (1,2)(3,5), (0,1)(5,7), |G|=12. It does not act transitively on the vertices. Its characteristic polynomial is x^8 - 12x^6 - 2x^5 + 36x^4 - 31x^2 + 12x and its edge connectivity and vertex connectivity are both 3.
    This graph has no non-trivial harmonic morphisms to P4 or C4 or Paw or K4 or Diamond. However, it has 6 non-trivial harmonic morphisms to D3, for example,
    3regular8c-D3-33302010
    The automorphism group of D3 (the symmetric group of degree 3) acts by permuting the colors {0,1,2,3} and so yields a total of 6=3! such harmonic color plots.Let \Gamma_1 denote the graph listed 4th on wikipedia’s Table of simple cubic graphs and defined using the sage code sage: Gamma1 = graphs.LCFGraph(8, [4, -3, 3, 4], 2). This example is especially interesting. Otherwise known as the “cube graph” Q_3, this graph \Gamma_1 has diameter 3, girth 4, and its automorphism group G is generated by ((2,4)(5,7), (1,7)(4,6), (0,1,4,5)(2,3,6,7), |G|=48. It is vertex transitive. Its characteristic polynomial is x^8 - 12x^6 + 30x^4 - 28x^2 + 9 and its edge connectivity and vertex connectivity are both 3.
    This graph has no non-trivial harmonic morphisms to D3 or P4 or Paw. However, it has 24 non-trivial harmonic morphisms to C4, 24 non-trivial harmonic morphisms to K4, and 24 non-trivial harmonic morphisms to Diamond. An example of a non-trivial harmonic morphism to K4:


    3regular8d-K4-31230210 A few examples of a non-trivial harmonic morphism to Diamond:
    3regular8d-Diamond-23320110 and
    3regular8d-Diamond-33210210 A few examples of a non-trivial harmonic morphism to C4:
    3regular8d-C4-12332100 3regular8d-C4-03322110 3regular8d-C4-33012210

    The automorphism group of C4 acts by permuting the colors {0,1,2,3} cyclically, while the automorphism group G acts by permuting coordinates. These yield more harmonic color plots.

Duursma zeta function of a graph

I’m going to start off with two big caveats:

  1. This is not Duursma‘s definition, it’s mine.
  2. I’m not convinced (yet?) that it’s a useful idea to examine such a zeta function.

So that’s your warning – you may be wasting your time reading this!

The Duursma zeta function of a linear block (error-correcting) code is due to Iwan Duursma and is a fascinating object of study. (More precisely, it’s defined for “formal” linear block codes, ie, defined via a weight enumerator polynomial with a suitable MacWilliams-like functional equation.) Sometimes it satisfies an analog of the Riemann hypothesis and sometimes it doesn’t. And sometimes that analog is still an open question.

Duursma zeta function of a code

Before we define the Duursma zeta function of a graph, we introduce the Duursma zeta function of a code.

Let C be an [n,k,d]_q code, ie a linear code over GF(q) of length n, dimension k, and minimum distance d. In general, if C is an [n,k,d]_q-code then we use [n,k^\perp,d^\perp]_q for the parameters of the dual code, C^\perp. It is a consequence of Singleton’s bound that n+2-d-d^\perp\geq , with equality when C is an MDS code. Motivated by analogies with local class field theory, in [Du] Iwan Duursma introduced the (Duursma) zeta function \zeta=\zeta_C:

\zeta_C(T)=\frac{P(T)}{(1-T)(1-qT)},
where P(T)=P_C(T) is a polynomial of degree n+2-d-d^\perp, called the zeta polynomial of C. We next sketch the definition of the zeta polynomial.

If C^\perp denotes the dual code of C, with parameters [n,n-k,d^\perp] then the MacWilliams identity relates the weight enumerator A_{C^\perp} of C^\perp to the weight enumerator A_{C} of C:

A_{C^\perp}(x,y) = |C|^{-1}A_C(x+(q-1)y,x-y).
A polynomial P(T)=P_C(T) for which

\frac{(xT+(1-T)y)^n}{(1-T)(1-qT)}P(T)=\dots +\frac{A_C(x,y)-x^n}{q-1}T^{n-d}+\dots \ .
is a (Duursma) zeta polynomial of C.

Theorem (Duursma): If C be an [n,k,d]_q code with d\geq 2 and d^\perp\geq 2 then the Duursma zeta polynomial P=P_C exists and is unique.

See the papers of Duursma for interesting properties and conjectures.

Duursma zeta function of a graph

Let \Gamma=(V,E) be a graph having |V(\Gamma)| vertices and |E(\Gamma)| edges. We define the zeta function of \Gamma via the Duursma zeta function of the binary linear code defined by the cycle space of \Gamma.

Theorem (see [DKR], [HB], [JV]): The binary code B=B_\Gamma generated by the rows of the incidence matrix of \Gamma is the cocycle space of \Gamma over GF(2), and the dual code B^\perp is the cycle space Z=Z_\Gamma of \Gamma:

B_\Gamma^\perp = Z_\Gamma.
Moreover,
(a) the length of B_\Gamma is |E|, dimension of B_\Gamma is |V|-1, and the minimum distance of B_\Gamma is the edge-connectivity of \Gamma,
(b) length of Z_\Gamma is |E|, dimension of Z_\Gamma is |E|-|V|+1, and the minimum distance of Z_\Gamma is the girth of \Gamma.

Call Z_\Gamma the cycle code and B_\Gamma the cocycle code.

Finally, we can introduce the (Duursma) zeta function \Gamma:

\zeta_\Gamma(T)=\zeta_{Z_\Gamma} =\frac{P(T)}{(1-T)(1-qT)},
where P=P_\Gamma=P_{Z_\Gamma} is the Duursma polynomial of \Gamma.

Example: Using SageMath, when \Gamma = W_5, the wheel graph on 5 vertices, we have

P_\Gamma(T) = \frac{2}{7}T^4 + \frac{2}{7}T^3 + \frac{3}{14}T^2 + \frac{1}{7}T + \frac{1}{14}.
All its zeros are of absolute value 1/\sqrt{2}.

References

[Du] I. Duursma, Combinatorics of the two-variable zeta function, in Finite fields and applications, 109–136, Lecture Notes in Comput. Sci., 2948, Springer, Berlin, 2004.

[DKR] P. Dankelmann, J. Key, B. Rodrigues, Codes from incidence matrices of graphs, Designs, Codes and Cryptography 68 (2013) 373-393.

[HB] S. Hakimi and J. Bredeson, Graph theoretic error-correcting codes, IEEE Trans. Info. Theory 14(1968)584-591.

[JV] D. Jungnickel and S. Vanstone, Graphical codes revisited, IEEE Trans. Info. Theory 43(1997)136-146.

Harmonic morphisms to P_3 – examples

This post expands on a previous post and gives more examples of harmonic morphisms to the path graph \Gamma_2=P_3.

The path graph P_3

If \Gamma_1 = (V_1, E_1) and \Gamma_2 = (V_2, E_2) are graphs then a map \phi:\Gamma_1\to \Gamma_2 (that is, \phi: V_1\cup E_1\to V_2\cup E_2) is a morphism provided

  1. if \phi sends an edge to an edge then the edges vertices must also map to each other: e=(v,w)\in E_1 and \phi(e)\in E_2 then \phi(e) is an edge in \Gamma_2 having vertices \phi(v)\in V_2 and \phi(w)\in V_2, where \phi(v)\not= \phi(w), and
  2. if \phi sends an edge to a vertex then the edges vertices must also map to that vertex: if e=(v,w)\in E_1 and \phi(e)\in V_2 then \phi(e) = \phi(v) = \phi(w).

As a non-example, if \Gamma_1 is a planar graph, if \Gamma_2 is its dual graph, and if \phi:\Gamma_1\to\Gamma_2 is the dual map V_1\to E_2 and E_1\to V_2, then \phi is not a morphism.

Given a map \phi_E : E_1 \rightarrow E_2 \cup V_2, an edge e_1 is called horizontal if \phi_E(e_1) \in E_2 and is called vertical if \phi_E(e_1) \in V_2. We say that a graph morphism \phi: \Gamma_1 \rightarrow \Gamma_2 is a graph homomorphism if \phi_E (E_1) \subset E_2. Thus, a graph morphism is a homomorphism if it has no vertical edges.

Suppose that \Gamma_2 has at least one edge. Let Star_{\Gamma_1}(v) denote the star subgraph centered at the vertex v. A graph morphism \phi : \Gamma_1 \to \Gamma_2 is called harmonic if for all vertices v \in V(\Gamma_1), the quantity
\mu_\phi(v,f)= |\phi^{-1}(f) \cap Star_{\Gamma_1}(v)|
(the number of edges in \Gamma_1 adjacent to v and mapping to the edge f in \Gamma_2) is independent of the choice of edge f in Star_{\Gamma_2}(\phi(v)).

An example of a harmonic morphism can be described in the plot below as follows: \phi:\Gamma_1\to \Gamma_2=P_3 sends the red vertices in \Gamma_1 to the red vertex of \Gamma_2=P_3, the green vertices in \Gamma_1 to the green vertex of \Gamma_2=P_3, and the white vertices in \Gamma_1 to the white vertex of \Gamma_2=P_3.

Example 1:

P3-C3-V

Example 2:
D3-2110

Example 3:
cyclic4-2101

John Cleese on creativity

Creativity is not a talent. It is a way of operating. John Cleese has written and lectured on creativity and listed the 5 factors that you can arrange to be more creative:

  1. Space                                                                                                                                                       You need to escape your usual pressures.
  2. Time                                                                                                                                                         You need your space for a specific block of time.
  3. Time                                                                                                                                                         Giving your mind as long as possible to come up with something  original, be  patient with yourself.
  4. Confidence                                                                                                                                              Nothing will stop you being creative so effectively as the fear of  making a mistake.
  5. Humor                                                                                                                                                      Have fun. Humor gets us from closed mode to the open mind quicker than anything else.