Here are some Sagemath examples for DFTs, DCTs, and DST’s. You can try copying and pasting them into the Sagemath cloud, for example.

The Sagemath **dft** command applies to a sequence S indexed by a set J computes the un-normalized DFT: (in Python)

[sum([S[i]*chi(zeta**(i*j)) for i in J]) for j in J]Here are some examples which explain the syntax:

sage: J = range(6)
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: s.dft(lambda x:x^2)
Indexed sequence: [6, 0, 0, 6, 0, 0]
indexed by [0, 1, 2, 3, 4, 5]
sage: s.dft()
Indexed sequence: [6, 0, 0, 0, 0, 0]
indexed by [0, 1, 2, 3, 4, 5]
sage: G = SymmetricGroup(3)
sage: J = G.conjugacy_classes_representatives()
sage: s = IndexedSequence([1,2,3],J) # 1,2,3 are the values of a class fcn on G
sage: s.dft() #** the "scalar-valued Fourier transform" of this class fcn**
Indexed sequence: [8, 2, 2]
indexed by [(), (1,2), (1,2,3)]
sage: J = AbelianGroup(2,[2,3],names='ab')
sage: s = IndexedSequence([1,2,3,4,5,6],J)
sage: s.dft() **# the precision of output is somewhat random and arch. dependent.**
Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I]
indexed by Multiplicative Abelian Group isomorphic to C2 x C3
sage: J = CyclicPermutationGroup(6)
sage: s = IndexedSequence([1,2,3,4,5,6],J)
sage: s.dft() **# the precision of output is somewhat random and arch. dependent.**
Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I]
indexed by Cyclic group of order 6 as a permutation group
sage: p = 7; J = range(p); A = [kronecker_symbol(j,p) for j in J]
age: s = IndexedSequence(A,J)
sage: Fs = s.dft()
sage: c = Fs.list()[1]; [x/c for x in Fs.list()]; s.list()
[0, 1, 1, -1, 1, -1, -1]
[0, 1, 1, -1, 1, -1, -1]

The DFT of the values of the quadratic residue symbol is itself, up to a constant factor (denoted c on the last line above).

Here is a 2nd example:

sage: J = range(5)
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: fs = s.dft(); fs
Indexed sequence: [5, 0, 0, 0, 0]
indexed by [0, 1, 2, 3, 4]
sage: it = fs.idft(); it
Indexed sequence: [1, 1, 1, 1, 1]
indexed by [0, 1, 2, 3, 4]
age: it == s
True
sage: t = IndexedSequence(B,J)
sage: s.convolution(t)
[1, 2, 3, 4, 5, 4, 3, 2, 1]

Here is a 3rd example:

sage: J = range(5)
sage: A = [exp(-2*pi*i*I/5) for i in J]
sage: s = IndexedSequence(A,J)
sage: s.dct() **# discrete cosine**
Indexed sequence: [2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I]
indexed by [0, 1, 2, 3, 4]
sage: s.dst() # discrete sine
Indexed sequence: [0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I]
indexed by [0, 1, 2, 3, 4]

Here is a 4th example:

sage: I = range(3)
sage: A = [ZZ(i^2)+1 for i in I]
sage: s = IndexedSequence(A,I)
sage: P1 = s.plot()
sage: P2 = s.plot_histogram()

P1 and P2 are displayed below:

The plot of P1

The plot of P2