Sports ranking methods, 4

This is the fourth of a series of expository posts on matrix-theoretic sports ranking methods. This post discusses the Elo rating.

This system was originally developed by Arpad Elo (Elo (1903-1992) was a physics professor at Marquette University in Milwaukee and a chess master, eight-time winner of the Wisconsin State Chess Championships.) Originally, it was developed for rating chess players in the 1950s and 1960s. Now it is used for table tennis, basketball, and other sports.

We use the following version of his rating system.

As above, assume all the $n$ teams play each other (ties allowed)
and let r_i denote the rating of Team i, i=1,2,\dots,n.

Let A=(A_{ij}) denote an $n\times n$ matrix of score results:

A_{ij}= \left\{ \begin{array}{rr} -1,& {\rm if\ team\ } i {\rm \ lost\ to\ team\ } j,\\ +1,& {\rm if\ team\ } i {\rm\ beat\ team\ } j,\\ 0, & {\rm if}\ i=j. \end{array} \right.

Let S_{ij}=(A_{ij}+1)/2.

As in the previous post, the matrix A associated to the example of the Patriot league is the adjacency matrix of a diagraph.

  1. Initialize all the ratings to be 100: {\bf r}=(r_1,\dots,r_n) = (100,\dots,100).
  2. After Team i plays Team j, update their rating using the formula

    r_i = r_i+K(S_{ij}-mu_{ij}),

    where K=10 and

    \mu_{ij} = (1+e^{-(r_i-r_j)/400})^{-1}.

In the example of the Patriot league, the ratings vector is

{\bf r}=(85.124, 104.79, 104.88, 85.032, 94.876, 124.53).

This gives the ranking

Lafayette < Army < Lehigh < Bucknell < Holy Cross < Navy.

This gives a prediction failure rate of 13.3\%.

Some SageMath code for this:

def elo_rating(A):
    """
    A is a signed adjacency matrix for a directed graph.

    Returns elo ratings of the vertices of Gamma = Graph(A) 
        
    EXAMPLES:
        sage: A = matrix(QQ,[
        [0 , -1 , 1  , -1 , -1 , -1 ],
        [1,   0 ,  -1,  1,  1,   -1  ],
        [-1 , 1 ,  0 ,  1 , 1  , -1  ],
        [1 , -1 , -1,  0 ,  -1 , -1  ],
        [1 , - 1 , - 1 , 1 , 0 , - 1  ],
        [1 ,  1  ,  1  , 1  , 1  , 0 ]
        ])
        sage: elo_rating(A)
        (85.124, 104.79, 104.88, 85.032, 94.876, 124.53)

    """
    n = len(A.rows())
    RR = RealField(prec=20)
    V = RR^n
    K = 10
    r0 = 100 # initial rating
    r = n*[r0]
    for i in range(n):
        for j in range(n):
            if ij and A[i][j]==1:
                S = 1
            elif ij and A[i][j]==-1:
                S = 0
            else:
                S = 1/2
            mu = 1/(1+e^(-(r[i]-r[j])/400))
            r[i] = r[i]+K*(S-mu)
    return V(r)

Sports ranking methods, 1

This is the first of a series of expository posts on matrix-theoretic sports ranking methods. This post, which owes much to discussions with TS Michael, discusses Massey’s method.

Massey’s method, currently in use by the NCAA (for football, where teams typically play each other once), was developed by Kenneth P. Massey
while an undergraduate math major in the late 1990s. We present a possible variation of Massey’s method adapted to baseball, where teams typically play each other multiple times.

There are exactly 15 pairing between these teams. These pairs are sorted lexicographically, as follows:

(1,2),(1,3),(1,4), …, (5,6).

In other words, sorted as

Army vs Bucknell, Army vs Holy Cross, Army vs Lafayette, …, Lehigh vs Navy.

The cumulative results of the 2016 regular season are given in the table below. We count only the games played in the Patriot league, but not including the Patriot league post-season tournament (see eg, the Patriot League site for details). In the table, the total score (since the teams play multiple games against each other) of the team in the vertical column on the left is listed first. In other words, ”a – b” in row $i$ and column $j$ means the total runs scored by team i against team j is a, and the total runs allowed by team i against team j is b. Here, we order the six teams as above (team 1 is Army (USMI at Westpoint), team 2 is Bucknell, and so on). For instance if X played Y and the scores were 10-0, 0-1, 0-1, 0-1, 0-1, 0-1, then the table would read 10-5 in the position of row X and column Y.

X\Y Army Bucknell Holy Cross Lafayette Lehigh Navy
Army x 14-16 14-13 14-24 10-12 8-19
Bucknell 16-14 x 27-30 18-16 23-20 10-22
Holy Cross 13-14 30-27 x 19-15 17-13 9-16
Lafayette 24-14 16-18 15-19 x 12-23 17-39
Lehigh 12-10 20-23 13-17 23-12 x 12-18
Navy 19-8 22-10 16-9 39-17 18-12 x
sm261_baseball-ranking-application_teams-digraph

Win-loss digraph of the Patriot league mens baseball from 2015

In this ordering, we record their (sum total) win-loss record (a 1 for a win, -1 for a loss) in a 15\times 6 matrix:

M = \left(\begin{array}{cccccc} -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{array}\right).

We also record their total losses in a column vector:

{\bf b}= \left(\begin{array}{c} 2 \\ 1 \\ 10 \\ 2 \\ 11 \\ 3 \\ 2 \\ 3 \\ 14 \\ 4 \\ 14 \\ 10 \\ 11 \\ 22 \\ 6 \\ \end{array}\right).

The Massey ranking of these teams is a vector {\bf r} which best fits the equation

M{\bf r}={\bf b}.

While the corresponding linear system is over-determined, we can look for a best (in the least squares sense) approximate solution using the orthogonal projection formula

P_V = B(B^tB)^{-1}B^t,

valid for matrices B with linearly independent columns. Unfortunately, in this case B=M does not have linearly independent columns, so the formula doesn’t apply.

Massey’s clever idea is to solve

M^tM{\bf r}=M^t{\bf b}

by row-reduction and determine the rankings from the parameterized form of the solution. To this end, we compute

M^tM= \left(\begin{array}{rrrrrr} 5 & -1 & -1 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 & -1 & -1 \\ -1 & -1 & 5 & -1 & -1 & -1 \\ -1 & -1 & -1 & 5 & -1 & -1 \\ -1 & -1 & -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & -1 & -1 & 5 \end{array}\right)

and

M^t{\bf b}= \left(\begin{array}{r} -24 \\ -10 \\ 10 \\ -29 \\ -10 \\ 63 \\ \end{array}\right).

Then we compute the rref of

A= (M^tM,M^t{\bf b}) = \left(\begin{array}{rrrrrr|r} 5 & -1 & -1 & -1 & -1 & -1 & -24 \\ -1 & 5 & -1 & -1 & -1 & -1 & -10 \\ -1 & -1 & 5 & -1 & -1 & -1 & 10 \\ -1 & -1 & -1 & 5 & -1 & -1 & -29 \\ -1 & -1 & -1 & -1 & 5 & -1 & -10 \\ -1 & -1 & -1 & -1 & -1 & 5 & 63 \end{array}\right),

which is

rref(M^tM,M^t{\bf b})= \left(\begin{array}{rrrrrr|r} 1 & 0 & 0 & 0 & 0 & -1 & -\frac{87}{6} \\ 0 & 1 & 0 & 0 & 0 & -1 & -\frac{73}{6} \\ 0 & 0 & 1 & 0 & 0 & -1 & -\frac{53}{6} \\ 0 & 0 & 0 & 1 & 0 & -1 & -\frac{92}{3} \\ 0 & 0 & 0 & 0 & 1 & -1 & -\frac{73}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).

If {\bf r}=(r_1,r_2,r_3,r_4,r_5,r_6) denotes the rankings of Army, Bucknell, Holy Cross, Lafayette, Lehigh, Navy, in that order, then

r_1=r_6-\frac{87}{6},\ \ r_2=r_6-\frac{73}{6},\ \ r_3=r_6-\frac{53}{6},\ \ r_4=r_6-\frac{92}{6},\ \ r_5=r_6-\frac{73}{6}.

Therefore

Lafayette < Army = Bucknell = Lehigh < Holy Cross < Navy.

If we use this ranking to predict win/losses over the season, it would fail to correctly predict Army vs Holy Cross (Army won), Bucknell vs Lehigh, and Lafayette vs Army. This gives a prediction failure rate of 20\%.

The minimum upset ranking problem

Suppose n teams play each other, and let Team r_1 < Team r_2 < \dots < Team r_n denote some fixed ranking (where r_1,\dots,r_n is some permutation of 1,\dots,n). An upset occurs when a lower ranked team beats an upper ranked team. For each ranking, {\bf r}, let U({\bf r}) denote the total number of upsets. The minimum upset problem is to find an “efficient” construction of a ranking for which U({\bf r}) is as small as possible.

In general, let A_{ij} denote the number of times Team i beat team $j$ minus the number of times Team j beat Team i. We regard this matrix as the signed adjacency matrix of a digraph \Gamma. Our goal is to find a Hamiltonian (undirected) path through the vertices of \Gamma which goes the “wrong way” on as few edges as possible.

  1. Construct the list of spanning trees of \Gamma (regarded as an undirected graph).
  2. Construct the sublist of Hamiltonian paths (from the spanning trees of maximum degree 2).
  3. For each Hamiltonian path, compute the associated upset number: the total number of edges transversal in \Gamma going the “right way” minus the total number going the “wrong way.”
  4. Locate a Hamiltonian for which this upset number is as large as possible.

Use this sagemath/python code to compute such a Hamiltonian path.

def hamiltonian_paths(Gamma, signed_adjacency_matrix = []):
    """
    Returns a list of hamiltonian paths (spanning trees of 
    max degree <=2).

    EXAMPLES:
        sage: Gamma = graphs.GridGraph([3,3])
        sage: HP = hamiltonian_paths(Gamma)
        sage: len(HP)
        20
        sage: A = matrix(QQ,[
        [0 , -1 , 1  , -1 , -1 , -1 ],
        [1,   0 ,  -1,  1,  1,   -1  ],
        [-1 , 1 ,  0 ,  1 , 1  , -1  ],
        [1 , -1 , -1,  0 ,  -1 , -1  ],
        [1 , - 1 , - 1 , 1 , 0 , - 1  ],
        [1 ,  1  ,  1  , 1  , 1  , 0 ]
        ])
        sage: Gamma = Graph(A, format='weighted_adjacency_matrix')
        sage: HP = hamiltonian_paths(Gamma, signed_adjacency_matrix = A)
        sage: L = [sum(x[2]) for x in HP]; max(L)
        5
        sage: L.index(5)
        21
        sage: HP[21]                                 
        [Graph on 6 vertices,
         [0, 5, 2, 1, 3, 4],
         [-1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1]]
        sage: L.count(5)
        1

    """
    ST = Gamma.spanning_trees()
    if signed_adjacency_matrix == []:
        HP = []
        for X in ST:
            L = X.degree_sequence()
            if max(L)<=2:
                #print L,ST.index(X), max(L)
                HP.append(X)
        return HP
    if signed_adjacency_matrix != []:
        A = signed_adjacency_matrix
        HP = []
        for X in ST:
            L = X.degree_sequence()
            if max(L)<=2:
                #VX = X.vertices()
                EX = X.edges()
		if EX[0][1] != EX[-1][1]:
                    ranking = X.shortest_path(EX[0][0],EX[-1][1])
		else:
		    ranking = X.shortest_path(EX[0][0],EX[-1][0])
		signature = [A[ranking[i]][ranking[j]] for i in range(len(ranking)-1) for j in range(i+1,len(ranking))]
                HP.append([X,ranking,signature])
        return HP

Wessell describes this method in a different way.

  1. Construct a matrix, M=(M_{ij}), with rows and columns indexed by the teams in some fixed order. The entry in the i-th row and the j-th column is defined bym_{ij}= \left\{ \begin{array}{rr} 0,& {\rm if\ team\ } i {\rm \ lost\ to\ team\ } j,\\ 1,& {\rm if\ team\ } i {\rm\ beat\ team\ } j,\\ 0, & {\rm if}\ i=j. \end{array} \right.
  2. Reorder the rows (and corresponding columns) to in a basic win-loss order: the teams that won the most games go at the
    top of M, and those that lost the most at the bottom.
  3. Randomly swap rows and their associated columns, each time checking if the
    number of upsets has gone down or not from the previous time. If it has gone down, we keep
    the swap that just happened, if not we switch the two rows and columns back and try again.

An implementaiton of this in Sagemath/python code is:

def minimum_upset_random(M,N=10):
    """
    EXAMPLES:
        sage: M = matrix(QQ,[
        [0 , 0 , 1  , 0 , 0 , 0 ],
        [1,   0 ,  0,  1,  1,   0  ],
        [0 , 1 ,  0 ,  1 , 1  , 0  ],
        [1 , 0 , 0,  0 ,  0 , 0  ],
        [1 , 0 , 0 , 1 , 0 , 0  ],
        [1 ,  1  ,  1  , 1  , 1  , 0 ]
        ])
        sage: minimum_upset_random(M)
        (
        [0 0 1 1 0 1]                    
        [1 0 0 1 0 1]                    
        [0 1 0 0 0 0]                    
        [0 0 1 0 0 0]                    
        [1 1 1 1 0 1]                    
        [0 0 1 1 0 0], [1, 2, 0, 3, 5, 4]
        )

    """
    n = len(M.rows())
    Sn = SymmetricGroup(n)
    M1 = M
    wins = sum([sum([M1[j][i] for i in range(j,6)]) for j in range(6)])
    g0 = Sn(1)
    for k in range(N):
        g = Sn.random_element()
        P = g.matrix()
        M0 = P*M1*P^(-1)
        if sum([sum([M0[j][i] for i in range(j,6)]) for j in range(6)])>wins:
            M1 = M0
            g0 = g*g0
    return M1,g0(range(n))

Splitting fields of representations of generalized symmetric groups, 7

In this post, we discover which representations of the generalized symmetric group G = S_n\ wr\ C_\ell = C_\ell^n\, >\!\!\lhd \, S_n can be realized over a given abelian extension of {\mathbb{Q}}.

Let \theta_{\mu,\rho}\in G^* be the representation defined previously, where \rho\in ((S_n)_\mu)^*.

Let K\subset {\mathbb{Q}}(\zeta_\ell) be a subfield, where \zeta_\ell is a primitive \ell^{th} root of unity. Assume K contains the field generated by the values of the character of \theta_{\mu,\rho}. Assume K/{\mathbb{Q}} is Galois and let \Gamma_K=Gal({\mathbb{Q}}(\zeta_\ell)/K). Note if we regard C_\ell as a subset of {\mathbb{Q}}(\zeta_\ell) then there is an induced action of \Gamma_K on C_\ell,

\sigma:\mu \longmapsto \mu^\sigma, \ \ \ \ \ \ \ \ \ \mu\in (C_\ell)^*,\ \ \sigma\in \Gamma_K,

where \mu^\sigma(z)=\mu(\sigma^{-1}(z)), z\in C_\ell. This action extends to an action on (C_\ell^n)^*=(C_\ell^*)^n.

Key Lemma:
In the notation above, \theta_{\mu,\rho}\cong\theta_{\mu,\rho}^\sigma if and only if \mu is equivalent to \mu^\sigma under the action of S_n on (C_\ell^n)^*.

Let

n_\mu(\chi)=|\{i\ |\ 1\leq i\leq n,\ \mu_i=\chi\}|,

where \mu=(\mu_1,...,\mu_n)\in (C_\ell^n)^* and \chi\in C_\ell^*.

Theorem: The character of \theta_{\mu,\rho}\in G^* has values in K if and only if n_\mu(\chi)=n_\mu(\chi^\sigma),
for all \sigma\in \Gamma_K and all \chi\in C_\ell^*.

This theorem is proven in this paper.

We now determine the splitting field of any irreducible character of a generalized symmetric group.

Theorem: Let \chi=tr(\theta_{\rho,\mu}) be an irreducible character of G=S_n\ wr\ C_\ell. We have

Gal({\mathbb{Q}}(\zeta_\ell)/{\mathbb{Q}}(\chi))= Stab_\Gamma(\chi).

This theorem is also proven in this paper.

In the next post we shall give an example.

Linear systems of graphs in Sage

Let \Gamma be a graph. A divisor on \Gamma is an element of the free group generated by the vertices V, {\mathbb{Z}}[V].

We say that divisors D and D^\prime are linearly equivalent and write D \sim D^\prime if D^\prime-D is a principal divisor, i.e., if D^\prime = D + \text{div}(f) for some function f : V \rightarrow {\mathbb{Z}}. Note that if D and D^\prime are linearly equivalent, they must have the same degree, since the degree of every principal divisor is 0. Divisors of degree 0 are linearly equivalent if and only if they determine the same element of the Jacobian. If D is a divisor of degree 0, we denote by [D] the element of the Jacobian determined by D. A divisor D is said to be effective if D(v) \geq 0 for all vertices v. We write D \geq 0 to mean that D is effective. The linear system associated to a divisor D is the set

|D| = \{ D^\prime \in \text{Div}(\Gamma ) : D^\prime \geq 0 \text{ and } D^\prime \sim D\},

i.e., |D| is the set of all effective divisors linearly equivalent to D. Note that if D_1 \sim D_2, then |D_1| = |D_2|. We note also that if \text{deg}(D)<0, then |D| must be empty.

Sage can be used to compute the linear system of any divisor on a graph.

def linear_system(D, Gamma):
    """
    Returns linear system attached to the divisor D.

    EXAMPLES:
        sage: Gamma2 = graphs.CubeGraph(2)
        sage: Gamma1 = Gamma2.subgraph(vertices = ['00', '01'], edges = [('00', '01')])
        sage: f = [['00', '01', '10', '11'], ['00', '01', '00', '01']]
        sage: is_harmonic_graph_morphism(Gamma1, Gamma2, f)
        True
        sage: PhiV = matrix_of_graph_morphism_vertices(Gamma1, Gamma2, f); PhiV
        [1 0 1 0]
        [0 1 0 1]
        sage: D = vector([1,0,0,1])
        sage: PhiV*D
        (1, 1)
        sage: linear_system(PhiV*D, Gamma1)
        [(2, 0), (1, 1), (0, 2)]
        sage: linear_system(D, Gamma2)
        [(0, 2, 0, 0), (0, 0, 2, 0), (1, 0, 0, 1)]
        sage: [PhiV*x for x in linear_system(D, Gamma2)]
        [(0, 2), (2, 0), (1, 1)]

    """
    Q = Gamma.laplacian_matrix()
    CS = Q.column_space()
    N = len(D.list())
    d = sum(D.list())
    #print d
    lin_sys = []
    if d < 0:
        return lin_sys
    if (d == 0) and (D in CS):
        lin_sys = [CS(0)]
        return lin_sys
    elif (d == 0):
        return lin_sys
    S = IntegerModRing(d+1)^N
    V = QQ^N
    for v in S:
        v = V(v)
        #print D-v,v,D
        if D-v in CS:
            lin_sys.append(v)
    return lin_sys

 

Differential calculus using Sagemath

Granville’s classic text book Elements of the Differential and Integral Calculus fell into the public domain and then much of it (but not all, at the time of this writing) was scanned into wikisource primarily by R. J. Hall. Granville’s entire book contains material on differential, integral, and even multivariable calculus. The material in the subset here is restricted to differential calculus topics, though contains some material which might properly belong to an elementary differential geometry course. The above-mentioned wikisource document uses mathml and latex and some Greek letter fonts.

In particular, the existence of this document owes itself primarily to three great open source projects: TeX/LaTeX, Wikipedia, and Sagemath (http://www.sagemath.org). Some material from Sean Mauch’s public domain text on Applied Mathematics, was also included.

The current latex document is due to David Joyner, who is responsible for re-formatting, editing for readability, the correction (or introduction) of typos from the scanned version, and any extra material added (for example, the hyperlinked cross references, and the Sagemath material). Please email corrections to wdjoyner@gmail.com.

Though the original text of Granville is public domain, the extra material added in this version is licensed under the GNU Free Documentation License (please see the FDL) as is most of Wikipedia.

Acknowledgements: I thank the following readers for reporting typos: Mario Pernici, Jacob Hicks.

Now available from amazon.com for $20 (not including shipping).

Discrete Fourier transforms using Sagemath

Here are some Sagemath examples for DFTs, DCTs, and DST’s. You can try copying and pasting them into the Sagemath cloud, for example.

The Sagemath dft command applies to a sequence S indexed by a set J computes the un-normalized DFT: (in Python)

[sum([S[i]*chi(zeta**(i*j)) for i in J]) for j in J]Here are some examples which explain the syntax:

sage: J = range(6)
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: s.dft(lambda x:x^2)
   Indexed sequence: [6, 0, 0, 6, 0, 0]
   indexed by [0, 1, 2, 3, 4, 5]
sage: s.dft()
   Indexed sequence: [6, 0, 0, 0, 0, 0]
   indexed by [0, 1, 2, 3, 4, 5]
sage: G = SymmetricGroup(3)
sage: J = G.conjugacy_classes_representatives()
sage: s = IndexedSequence([1,2,3],J) # 1,2,3 are the values of a class fcn on G
sage: s.dft()   # the "scalar-valued Fourier transform" of this class fcn
    Indexed sequence: [8, 2, 2]
    indexed by [(), (1,2), (1,2,3)]
sage: J = AbelianGroup(2,[2,3],names='ab')
sage: s = IndexedSequence([1,2,3,4,5,6],J)
sage: s.dft()   # the precision of output is somewhat random and arch. dependent.
    Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I]                
     indexed by Multiplicative Abelian Group isomorphic to C2 x C3
sage: J = CyclicPermutationGroup(6)
sage: s = IndexedSequence([1,2,3,4,5,6],J)
sage: s.dft()   # the precision of output is somewhat random and arch. dependent.
    Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I]
     indexed by Cyclic group of order 6 as a permutation group
sage: p = 7; J = range(p); A = [kronecker_symbol(j,p) for j in J]
age: s = IndexedSequence(A,J)
sage: Fs = s.dft()
sage: c = Fs.list()[1]; [x/c for x in Fs.list()]; s.list()
     [0, 1, 1, -1, 1, -1, -1]
     [0, 1, 1, -1, 1, -1, -1]

 

The DFT of the values of the quadratic residue symbol is itself, up to a constant factor (denoted c on the last line above).

Here is a 2nd example:

sage: J = range(5)
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: fs = s.dft(); fs
  Indexed sequence: [5, 0, 0, 0, 0]
   indexed by [0, 1, 2, 3, 4]
sage: it = fs.idft(); it
  Indexed sequence: [1, 1, 1, 1, 1]
   indexed by [0, 1, 2, 3, 4]
age: it == s
True
sage: t = IndexedSequence(B,J)
sage: s.convolution(t)
 [1, 2, 3, 4, 5, 4, 3, 2, 1]

Here is a 3rd example:

sage: J = range(5)
sage: A = [exp(-2*pi*i*I/5) for i in J]
sage: s = IndexedSequence(A,J)
sage: s.dct()    # discrete cosine
   Indexed sequence: [2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I]
    indexed by [0, 1, 2, 3, 4]
sage: s.dst()        # discrete sine
  Indexed sequence: [0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I]
   indexed by [0, 1, 2, 3, 4]

Here is a 4th example:

sage: I = range(3)
sage: A = [ZZ(i^2)+1 for i in I]
sage: s = IndexedSequence(A,I)
sage: P1 = s.plot()
sage: P2 = s.plot_histogram()

P1 and P2 are displayed below:

The plots of P1

The plot of P1

The plot of P2

The plot of P2