Here are some Sagemath examples for DFTs, DCTs, and DST’s. You can try copying and pasting them into the Sagemath cloud, for example.
The Sagemath dft command applies to a sequence S indexed by a set J computes the un-normalized DFT: (in Python)
[sum([S[i]*chi(zeta**(i*j)) for i in J]) for j in J]Here are some examples which explain the syntax:
sage: J = range(6) sage: A = [ZZ(1) for i in J] sage: s = IndexedSequence(A,J) sage: s.dft(lambda x:x^2) Indexed sequence: [6, 0, 0, 6, 0, 0] indexed by [0, 1, 2, 3, 4, 5] sage: s.dft() Indexed sequence: [6, 0, 0, 0, 0, 0] indexed by [0, 1, 2, 3, 4, 5] sage: G = SymmetricGroup(3) sage: J = G.conjugacy_classes_representatives() sage: s = IndexedSequence([1,2,3],J) # 1,2,3 are the values of a class fcn on G sage: s.dft() # the "scalar-valued Fourier transform" of this class fcn Indexed sequence: [8, 2, 2] indexed by [(), (1,2), (1,2,3)] sage: J = AbelianGroup(2,[2,3],names='ab') sage: s = IndexedSequence([1,2,3,4,5,6],J) sage: s.dft() # the precision of output is somewhat random and arch. dependent. Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I] indexed by Multiplicative Abelian Group isomorphic to C2 x C3 sage: J = CyclicPermutationGroup(6) sage: s = IndexedSequence([1,2,3,4,5,6],J) sage: s.dft() # the precision of output is somewhat random and arch. dependent. Indexed sequence: [21.0000000000000, -2.99999999999997 - 1.73205080756885*I, -2.99999999999999 + 1.73205080756888*I, -9.00000000000000 + 0.0000000000000485744257349999*I, -0.00000000000000976996261670137 - 0.0000000000000159872115546022*I, -0.00000000000000621724893790087 - 0.0000000000000106581410364015*I] indexed by Cyclic group of order 6 as a permutation group sage: p = 7; J = range(p); A = [kronecker_symbol(j,p) for j in J] age: s = IndexedSequence(A,J) sage: Fs = s.dft() sage: c = Fs.list()[1]; [x/c for x in Fs.list()]; s.list() [0, 1, 1, -1, 1, -1, -1] [0, 1, 1, -1, 1, -1, -1]
The DFT of the values of the quadratic residue symbol is itself, up to a constant factor (denoted c on the last line above).
Here is a 2nd example:
sage: J = range(5) sage: A = [ZZ(1) for i in J] sage: s = IndexedSequence(A,J) sage: fs = s.dft(); fs Indexed sequence: [5, 0, 0, 0, 0] indexed by [0, 1, 2, 3, 4] sage: it = fs.idft(); it Indexed sequence: [1, 1, 1, 1, 1] indexed by [0, 1, 2, 3, 4] age: it == s True sage: t = IndexedSequence(B,J) sage: s.convolution(t) [1, 2, 3, 4, 5, 4, 3, 2, 1]
Here is a 3rd example:
sage: J = range(5) sage: A = [exp(-2*pi*i*I/5) for i in J] sage: s = IndexedSequence(A,J) sage: s.dct() # discrete cosine Indexed sequence: [2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I, 2.50000000000011 + 0.00000000000000582867087928207*I] indexed by [0, 1, 2, 3, 4] sage: s.dst() # discrete sine Indexed sequence: [0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I, 0.0000000000000171529457304586 - 2.49999999999915*I] indexed by [0, 1, 2, 3, 4]
Here is a 4th example:
sage: I = range(3) sage: A = [ZZ(i^2)+1 for i in I] sage: s = IndexedSequence(A,I) sage: P1 = s.plot() sage: P2 = s.plot_histogram()
P1 and P2 are displayed below: