Harmonic morphisms to P_3 – examples

This post expands on a previous post and gives more examples of harmonic morphisms to the path graph \Gamma_2=P_3.

The path graph P_3

If \Gamma_1 = (V_1, E_1) and \Gamma_2 = (V_2, E_2) are graphs then a map \phi:\Gamma_1\to \Gamma_2 (that is, \phi: V_1\cup E_1\to V_2\cup E_2) is a morphism provided

  1. if \phi sends an edge to an edge then the edges vertices must also map to each other: e=(v,w)\in E_1 and \phi(e)\in E_2 then \phi(e) is an edge in \Gamma_2 having vertices \phi(v)\in V_2 and \phi(w)\in V_2, where \phi(v)\not= \phi(w), and
  2. if \phi sends an edge to a vertex then the edges vertices must also map to that vertex: if e=(v,w)\in E_1 and \phi(e)\in V_2 then \phi(e) = \phi(v) = \phi(w).

As a non-example, if \Gamma_1 is a planar graph, if \Gamma_2 is its dual graph, and if \phi:\Gamma_1\to\Gamma_2 is the dual map V_1\to E_2 and E_1\to V_2, then \phi is not a morphism.

Given a map \phi_E : E_1 \rightarrow E_2 \cup V_2, an edge e_1 is called horizontal if \phi_E(e_1) \in E_2 and is called vertical if \phi_E(e_1) \in V_2. We say that a graph morphism \phi: \Gamma_1 \rightarrow \Gamma_2 is a graph homomorphism if \phi_E (E_1) \subset E_2. Thus, a graph morphism is a homomorphism if it has no vertical edges.

Suppose that \Gamma_2 has at least one edge. Let Star_{\Gamma_1}(v) denote the star subgraph centered at the vertex v. A graph morphism \phi : \Gamma_1 \to \Gamma_2 is called harmonic if for all vertices v \in V(\Gamma_1), the quantity
\mu_\phi(v,f)= |\phi^{-1}(f) \cap Star_{\Gamma_1}(v)|
(the number of edges in \Gamma_1 adjacent to v and mapping to the edge f in \Gamma_2) is independent of the choice of edge f in Star_{\Gamma_2}(\phi(v)).

An example of a harmonic morphism can be described in the plot below as follows: \phi:\Gamma_1\to \Gamma_2=P_3 sends the red vertices in \Gamma_1 to the red vertex of \Gamma_2=P_3, the green vertices in \Gamma_1 to the green vertex of \Gamma_2=P_3, and the white vertices in \Gamma_1 to the white vertex of \Gamma_2=P_3.

Example 1:

P3-C3-V

Example 2:
D3-2110

Example 3:
cyclic4-2101

One thought on “Harmonic morphisms to P_3 – examples

  1. Pingback: Harmonic morphisms to P_4 – examples | Yet Another Mathblog

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s