Yet Another Mathblog

Menu

Skip to content
  • Home
  • About
    • CV/Research Bio
    • Favorite quotations
  • Math problems of the week
  • Mathematics and chess
    • Chess lectures by Igor Epshteyn
      • Lesson 1 by Lifemaster Igor Epshteyn
      • Lesson 2 by Lifemaster Igor Epshteyn
      • Lesson 3 by Igor Epshteyn
      • Lesson 4 by Igor Epshteyn
      • Lesson 5 by Igor Epshteyn
      • Lesson 6 by Igor Epshteyn
      • Lesson 7 by Igor Epshteyn
      • Lesson 8 by Igor Epshteyn
    • Chess problems with a mathematical flavor
    • Endgame explorations chess columns by Noam Elkies
      • Endgame Explorations 1: An Introduction,
      • Endgame Explorations 2: Perpetual Attack
      • Endgame Explorations 3: Domination
      • Endgame Explorations 4: Zugzwang (Part 1)
      • Endgame Explorations 5: Zugzwang (Part 2)
      • Endgame Explorations 8: White Minimals
  • Permutation puzzles
    • Errata for “Adventures in Group Theory”, 2nd edition
    • Lecture notes on the Rubik’s cube
      • Rubik’s cube notes – Cayley graphs and God’s algorithm
      • Rubik’s cube notes – functions
      • Rubik’s cube notes – groups, I
      • Rubik’s cube notes – groups, II
      • Rubik’s cube notes – introduction
      • Rubik’s cube notes – logic
      • Rubik’s cube notes – orbits, actions, cosets
      • Rubik’s cube notes – permutation puzzles
      • Rubik’s cube notes – permutations
      • Rubik’s cube notes – structure of the cube group
    • new Rubik’s cube bound of Tom Rokicki
  • The toric package for GAP
    • How do I construct … in GAP?

Daily Archives: 2016/11/23

Simple unsolved math problem, 4

Posted on 2016/11/23 by wdjoyner

Problem: Optimally pack n unit circles into the smallest possible equilateral triangle.

circle-packing_60_60_60_wikipedia

Let L(n) denote the length of the side of the smallest equilateral triangle in which n circles have been packed optimally. This number is, in general, unknown.

Posted in math, research, teaching mathematics | Tagged math, puzzle, research, unsolved math problem | 1 Comment
November 2016
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
282930  
« Oct   Dec »

Blogroll

  • Alasdair’s musings
  • ars mathematica
  • Borcherds’ blog
  • Christopher Olah\’s Blog
  • E. Kowalski’s blog
  • Error Correcting Codes: Combinatorics, Algorithms and Applications
  • http://wheelsandwhirls.wordpress.com
  • Linux Photography
  • mvngu
  • neverending books
  • Open Knowledge Foundation Weblog
  • T. Gower’s blog
  • T. Tao’s blog
  • USNA Math Department Matroid seminar
  • WordPress.com
  • WordPress.org
  • Yet Another Mathblog

math

  • American Math Society
  • D Zeilberger opinions
  • Math ArXivs

sage

  • GAP website
  • Michael Abshoff’s blog
  • planet sage
  • SAGE website

Recent Posts

  • Harmonic quotients of regular graphs – examples
  • A graph_id function in SageMath
  • Rankine’s “The Mathematician in Love”
  • Let’s do the Landau shuffle
  • Coding Theory and Cryptography

Tags

Bill Wardlaw coding theory combinatorics error-detecting codes graph theory history learning Lester Hill math mathematics Michael Reid open source POW problem of the week puzzle representation theory research Rubik's cube sage unsolved math problem
Blog at WordPress.com.
  • Follow Following
    • Yet Another Mathblog
    • Join 57 other followers
    • Already have a WordPress.com account? Log in now.
    • Yet Another Mathblog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

You must be logged in to post a comment.