Calculus on graphs

In these notes, I tried to cover enough material to get a feeling for “calculus on graphs”, with applications to sports rankings and the Friendship Theorem. Here’s a list of the topics.

1 . Introduction
2. Examples
3. Basic definitions
3.1 Diameter, radius, and all that
3.2 Treks, trails, paths
3.3 Maps between graphs
3.4 Colorings
3.5 Transitivity
4. Adjacency matrix
4.1 Definition
4.2 Basic results
4.3 The spectrum
4.4 Application to the Friendship Theorem
4.5 Eigenvector centrality and the Keener ranking
4.6 Strongly regular graphs
4.7  Orientation on a graph
5. Incidence matrix
5.1 The unsigned incidence matrix
5.2 The oriented case
5.3 Cycle space and cut space
6. Laplacian matrix
6.1 The Laplacian spectrum
7  Hodge decomposition for graphs
7.1 Abstract simplicial complexes
7.2 The Bjorner complex and the Riemann hypothesis
7.3 Homology groups
8. Comparison graphs
8.1 Comparison matrices
8.2 HodgeRank
8.3 HodgeRank example

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s